Modeling of Lewis number dependence of scalar dissipation rate transport for Large Eddy Simulations of turbulent premixed combustion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalar Mixing and Dissipation Rate in Large-eddy Simulations of Non-premixed Turbulent Combustion

Predictions of scalar mixing and the scalar dissipation rate from large-eddy simulations of a piloted nonpremixed methane/air diffusion flame (Sandia flame D) using the Lagrangian-type flamelet model are presented. The results obtained for the unconditionally filtered scalar dissipation rate are qualitatively compared with general observations of scalar mixing from experiments in non-reactive a...

متن کامل

Improved Pollutant Predictions in Large-eddy Simulations of Turbulent Non-premixed Combustion by Considering Scalar Dissipation Rate Fluctuations

In this study a new formulation of the unsteady flamelet model is derived to account for the locally resolved distribution of the scalar dissipation rate obtained from large-eddy simulations (LES). Starting from the unsteady flamelet equations, a transformation leads to an Eulerian flamelet model, in which the scalar dissipation rate appears as function of time, space, and mixture fraction. In ...

متن کامل

Stochastic modeling of scalar dissipation rate fluctuations in non-premixed turbulent combustion

where DZ is the diffusion coefficient of the mixture fraction. The scalar dissipation rate appears in many models for turbulent non-premixed combustion as, for instance, the flamelet model (Peters (1984), Peters (1987)), the Conditional Moment Closure (CMC) model (Klimenko & Bilger (1999)), or the compositional pdf model (O’Brien (1980), Pope (1985)). In common technical applications, it has be...

متن کامل

Investigation of scalar dissipation rate fluctuations in non-premixed turbulent combustion using a stochastic approach

Turbulent fluctuations of the scalar dissipation rate are well known to have a strong impact on ignition and extinction in non-premixed combustion. In the present study the influence of stochastic fluctuations of the scalar dissipation rate on the solution of the flamelet equations is investigated. A one-step irreversible reaction is assumed. The system can thereby be described by the solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Heat Transfer, Part A: Applications

سال: 2016

ISSN: 1040-7782,1521-0634

DOI: 10.1080/10407782.2015.1125732